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Analysis of Waveguides with Metal Inserts

ABBAS S. OMAR, SENIOR MEMBER, IEEE, AND KLAUS F. SCHUNEMANN, SENIOR MEMBER, IEEE

Abstract —A systematic analysis of waveguides with metal inserts is
presented. The method is based on a field expansion in terms of the
normal modes of the corresponding hollow waveguide without metal in-
serts. The analysis leads to two main formulations: the matrix formulation
and the moment method formulation. The matrix formulation is suitable
for structures with smooth metal inserts, which are free from sharp edges,
while the mpment method is more suitable for metal sheets (e.g. strips and
fins) or metal inserts with sharp edges (e.g. ridges).

The validity of the method is tested by investigating some special cases,
in which the surface of the metal insert coincides with one of the
coordinate surfaces, e.g. a bifurcation in circular or rectangular wave-
guides. The method is then applied to the analysis of striplines and ridge
waveguides. It leads to a generalization of the widely used spectral-domain
technique in that ridges, fins, and strips with finite thickness can now be
analyzed likewise. Any existing routine for the analysis of planar structures
which is based on the spectral-domain technique can then be slightly
modified in order to take the metallization thickness into account.

I. INTRODUCTION

OST OF THE existing methods for the analysis of
Mguiding structures depend to a great extent on the
specific geometry of the individual structure. A systematic
method for the analysis of waveguides with arbitrarily
shaped cross section is strongly recommended for com-
puter-aided design and optimization of complex mi-
crowave systems, in which different guiding structures are
involved. Although the finite element (or difference)
method (e.g. [1] and [2]) and the mode-matching technique
(e.g. [3] and [4]) are capable of analyzing a wide variety of
structures, their storage and/or CPU time requirements
represent severe restrictions on any economical CAD algo-
rithm.

Many guiding structures simply have a rectangular or a
circular outer boundary and one (or more) contacting or
noncontacting metal inserts which may be either solid or
sheetlike. Examples are striplines and microstrips, finned
waveguides and finlines, ridge waveguides, and multicon-
ductor transmission lines. The electromagnetic field inside
these structures can be expanded in terms of the eigen-
modes of the corresponding hollow rectangular or circular
waveguide in such a way that the different expansions
vanish everywhere inside the metal inserts. This procedure
corresponds to the one-dimensional Fourier series, in which
a function which vanishes over a certain interval can be
expanded with respect to the harmonics corresponding to a
larger interval which includes the smaller one.
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Fig. 1. Cross section of a waveguide with a metal insert.

In this paper, only homogeneously filled waveguides will
be considered. If the method presented here is, however,
combined with that presented in [5], inhomogeneously
filled structures can be analyzed likewise.

II. BASIC FORMULATION

Fig. 1 shows the cross section of a waveguide with a
single contacting or noncontacting metal insert. Extending
the analysis to multiconductor transmission lines is
straightforward. The direction of propagation, in which the
structure is uniform, is taken along the z axis with the
corresponding propagation constant . Let {4,,} and
{e,,} be the complete sets of axial magnetic and electric
fields which characterize the TE and TM modes, respec-
tively, of the hollow waveguide (i.e., with the metal insert
S, removed). Then 4, and e,, are real functions of the
transverse coordinates, which correspond to the cutoff
wavenumbers k,, and k,,, respectively, and satisfy the
orthogonality relations [6]

fhznhzm as = PnhSnm (la)
S

(1b)

ne-nm

j:g €,,6.mdS =P, 9

where §,,, is the Kronecker delta.

Let v, and k be the transverse component of the del
operator and the unit vector in the axial direction, respec-
tively. The set {V,e,,} is, in fact, complete with respect to
the curl-free transverse electric fields, while the set {k X
V.h,,} is complete with respect to the divergence-free
transverse electric fields. The two sets {V,4,,} and {V,e,,
X k} have the same properties with respect to transverse
magnetic fields.

Let e, h, e,, and h, be the transverse electric, transverse
magnetic, axial electric, and axial magnetic field, respec-
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tively, in the original structure (i.e., with the metal insert
So present) with z dependence e /#? being dropped out.
Then

V., Xe=— jwuohzfc

(2a)

U, X h=jwege,k (2b)
V,h,+ jBh = jwey(k X e) (2¢)
Ve, + jBe=— jopo(k xh). (29)

These field components can be expressed as expansions in
terms of the above-mentioned complete sets. Because the
expansions are defined everywhere over S, it must be
claimed that they vanish identically over S,. Then e,, the
tangential component of e, and the normal component of
h, which must vanish on C,, are continuous across C,. On
the other hand, %, the tangential component of k, and the
normal component of e, which generally do not vanish on
C,, have step discontinuities at C,. '

Because the structure is homogeneously filled (empty), it
can support either TE or TM modes (the TEM mode will
be shown to be a TM mode with vanishing cutoff
wavenumber).

A. TE Modes

Because the tangential component of kA has a step dis-
continuity at (,, (V,Xh), which includes the normal
derivative of the tangential component, behaves as a Dirac
delta function there. This dirac delta function is just the
axial component of the surface current at C,. The vector
(V, X h) can then vanish everywhere over S except at (,,
and hence h cannot be expanded in terms of the curl-free
set {V,h,,} only. It needs, in addition, the divergence-free
set {V,e,, X k}. The transverse components h and e can
then be expanded as

b»
P

(n)
h=-jB| Y %-—v,hm +y ~‘/:(v,ez,, xk)| (3a)
n nh n ne

j°’.l’3‘°(h></2).

e= (3b)
Because the normal component of h is continuous across
C,, h, can be obtained from (jBh,=v, h) by a term-by-
term differentiation of (3a):

aM
hz = Z Tkrzthhzn (4)
n nh

The expansion coefficients a{” and b{" are obtained by
making use of the orthogonality relations (1):

al = h-v,h,,dS

-1
—_— 5
" jkah\/Pnh ‘/:S‘-So ( a)

_ h-(v,e,, X k) ds.

My —
b= i

The integration is taken over (S — S;) in order to guaran-

(5b)

1925

tee the vanishing of h and e given by (3) everywhere on
Sy. After some mathematical manipulations, one obtains

1
(h) = i -
Ry T A ()
1 A
W= e X b ve,)a (@

where k. is the cutoff wavenumber (k2= k3 — B?).

B. TM Modes

Because the tangential component of e is continuous
across C, (v, X e) is free from Dirac delta functions at
and hence can vanish everywhere on S. Consequently, e
can be expanded in terms of the curl-free set {V,e,,}. The
transverse components e and h can then be written as

al®
e= ; T Ve, (7a)
Jwey o
h=——(k>e). (7b
5 (kxe) )

Because e, is continuous across C,, it can be obtained
from (— jBV,e, =k?%) by a term-by term integration of

(7a):
— k2
e, = <

¥4 ]B ; ﬁf ezn *

a f,")

(8)

Following a procedure similar to that for the TE modes,
the expansion coefficients a{® are obtained:

afle) =

1
5~ —P e, (f-e)dl 9
RIS
If k,=0, e,=0 and the TEM mode is obtained. The
quantity (jBe,/k?) is, however, finite and plays the same
role as an electrostatic potential .

III.

If the contour C is closed and smooth enough, i.c., free
from sharp edges, the different field components are regu-
lar at C, so that their series representations converge
rapidly. In this case, 4, in (6) and (#-e) in (9) can be
replaced by twice their series representations (4) and (7a),
respectively. The factor two is due to the step discontinu-
ities of h, and (fi-e) at C, The series in (4) and (7a)
converge then to only half the value of A, and (#-e),
respectively, at C.

Substituting (4) into (6a), one arrives at the following
matrix eigenvalue equation for TE modes:

([A"]=[C" D[ A*]a® = k2 [ AF]a® (10)

where [A’] is a diagonal matrix with elements k?2,, and
a™ is a column vector with elements a{". The elements of

MATRIX FORMULATION
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Fig. 2. Cross section of a coaxial transmission line.

the square matrix [C"] are given by

Ch_

2
nm _W¢Cbhzm(ﬁ .Vthzn) dl.
nh* mh

Substituting (4) into (6b), the column vector bV with
elements b{" is given by

(11)

(12)

where [ A°] is a diagonal matrix with elements k2, and [T']

ne?

is, principally, a nonsquare matrix with elements given by

1
b = AT [T][A]a®

2 ~
L= § bl () Vet (1)

Substituting (7a) into (9), the following matrix eigenvalue
equation is obtained for TM modes:

([A]+[C])a’® = kZa‘ (14)

where a(® is a column vector with elements a(®. The
elements of the square matrix [C¢] are now given by

e 2 A
Con= m%m(" Vi€, dl. (15)

It is worth noting that if we look for the dual field,
which exists on §; and vanishes identically over (S — S,),
the above analysis remains valid if the normal unit vector
#i is replaced by —# in all contour integrations. For the
matrix formulation, this has the effect of changing only the
signs of the matrices [C*], [T], and [C®]. Both dual cases
can consequently be analyzed using the same equations if
these sign changes are taken into account.

The matrix eigenvalue equations (10) and (14) have
essentially doubly infinite order. For computational pur-
poses, the series in (3), (4), (7), and (8) must be truncated,
retaining a finite number of terms. The matrices in (10),
(12), and (14) then become of finite order.

IV. AzIMUTHALLY INDEPENDENT TM MODES
IN A CoAXIAL LINE

In order to demonstrate the validity of the matrix for-
mulation, a simple structure is analyzed: a coaxial line.
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TABLE I
FIRST TEN EIGENVALUES CORRESPONDING TO DIFFERENT MATRIX SIZES
FOR THE COAXIAL CASE WITH a = (.5

Ezgen— | i H H H

b 1 i & H 2 H 4 H ]
value H H H H
€50450) § 0.2209 1 & 2373 | 12,5383 |} 18 8278 | 25 1142

(100x1003: O 1567 { & 2416 § 12.5425 | 18 8321 | 25 1185

(200x200)! O 1109 | & 2438 | 12 5847 | 18 8343 | 25 1207

Exact | 0.0000 | & 246461 | 12 54469 | 18 8344 | P25 1228
-
Eigen— | H H H
H & H 7 H = H 2 io
value !} H H H

(530x50) | 31 3993 § 37 6837 i 43 9477 ! 50 2514 | S&. 5350

{100x1003} 31.4037 | 37.4882 | 43 9723 : 50, 2562 | 5S4 5399

(200x200)1 31 4058 | 37 6903 | 43.9745 ! 50.2584 | 5& 5421

Exact 1 31 4080 | 37. 46925 ! 43 97446 | 50 2605 | 55 5443

G .5 1.0
(r/7a} —>
I 1
T 2.0 T R
: )
& C |
1.5 T+
1.0 I
.5 C
- b}
o ,1;,1.“
B 1 i 1 1 'I 1 1 1 L
0 .5 1.4
(¢/a) —>

Fig. 3. Electrostatic potential and radial electric field for the coaxial
case with a=0.5————— matrix formulation; exact.

The TEM dominant mode is one of the TM modes, which
corresponds to k.= 0. Due to the rotational symmetry, the
modes with different azimuthal dependences are decou-
pled. For illustration, only azimuthally independent TM
modes are considered. Fig. 2 shows the cross section of a
coaxial transmission line with outer and inner conductor
radii a and b, respectively. The g-independent set {e,,)} is
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TABLE II
FIRST TEN EIGENVALUES CORRESPONDING TO DIFFERENT MATRIX SIZES
FOR THE CIRCULAR WAVEGUIDE CASE WITH a = 0.5

Eigen- | H H i H
H 1 H 2 H 3 H 4 H 5
value | H i H
(50x50) | 4.8007 } 11 0313 ! 17 2986 | 23.5742 | 29 8509
{100x100)) 4.8052 ! 11.0358 | 17 3031 | 23 5787 | 29 8575
(200x200)% 4 8074 | 11.0380 | 17 3053 | 23.5809 ! 29. 8597
Exact | 4.8097 | 11 0402 | 17.3075 | 23.5831 | 29 8618
Eigen- | H H H H
H & H 7 H 8 } 9 b 10
value | H H H H
(50x30) | 36. 1331 | 42 4141 | 48. 4956 | 54 9775 ! 61 2595

{100x100)1 36 1378 | 42 4189 | 48 70046 | 54 9825 | 61 2648

(200x200)1 36 1400 | 42.4211 | 48 7028 ! 54 9848 | 61 2670

Exact | 36 1421 | 42 4233 | 48 7049 | 54 9870 ! &1 2692

0 .5 1.0
(r/a} —>
1 I :
1.0 T g
i L
5T
0. e
0 .5 1.0
(r/a) —>
Fig. 4. Axial and radial electric fields for the circular waveguide case
witha=0.5. ———- matrix formulation; exact.
characterized by
€= JO(kner) (163)
D,
k,, =— (16b)
a
Pne = WaZJIZ( pn) (16C)
n=1,2,3,... (16d)
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Fig. 5. Thin metal insert.

where Jy(x) and Jj(x) are Bessel functions of the first
kind and zeroth and first order, respectively, and p, is the
nth zero of Jy(x). Substituting (16) into (15), one arrives at

. —4ap,J(pe) Ji(pe)
Con= B
a“Ji(p,) I (Pn)

where a = b/a. Referring to (14), the different eigenvalues
of ([A°]£[C*]) are numerically calculated. The positive
sign refers to fields which exist in the coaxial region and
vanish over the inner conductor, while the negative sign
refers to the dual fields. )

These two cases will be referred to as the coaxial case
and the circular waveguide case, respectively. Table I shows
the first ten eigenvalues correspending to different matrix
sizes for the coaxial case with a = 0.5. Exact values are also
included for comparison. The field corresponding to the
smallest eigenvalue is plotted in Fig. 3 along with the exact
field. It represents the electrostatic potential ¢ and the
radial electric field e, in the coaxial region. The same is
demonstrated by Table II and Fig. 4 for the dual case,
namely the circular waveguide case.

(17)

V. MOMENT METHOD FORMULATION

If the contour C, has sharp edges, some field compo-
nents become singular at these edges. A large number of
terms must then be retained in the series representing these
components, which results in oversized matrices in (10)
and (14). Another case, for which the matrix formulation is
not valid at ali, is when the contour C; is open; ie., the
metal insert is idealized to an infinitesimally thin one.
Referring to Fig. 5, as § -0, C; = C;f, i~ — —#A™". The
other fields involved in (11), (13), and (15) are continuous
everywhere on S and hence the matrices [C?], [T'], and
[C?] will vanish as § - 0.

When (6) and (9) are, however, investigated in the
limiting case 8 =0, it is easily shown that the contour
integral along C, can be replaced by a simple line integral
along Cj if A is replaced by A", and h, and (#-e) are
replaced by (A —h; ) and (A*-e* — A™e™), respectively.
This procedure corresponds to the fact that the surface
currents (charges) at C; and C; will add together, form-
ing a single current (charge) sheet if 8§ =0. In the follow-
ing, no special symbols will be used for this case. The usual
symbols must be interpreted according to the above dis-
cussion.

For the above-mentioned cases, it is more suitable to
expand A, and (fi-e) at C; in terms of basis functions,
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which individually satisfy the edge conditions
h leO = ZI i,
1

(”A'e)!coz Z V;gl

(18a)
(18b)

Here I; and V, are expansion coefficients, and 4, and §,
are the basis functions. The expansion coefficients are
determined by asking for a vanishing tangential electric
field (or normal magnetic field) at C,. If we test the
vanishing fields at C;, by the same basis functions
(Galerkin’s procedure), we arrive at the following equa-
tions:

a® = [A]7A([ A - k2[1]) T IEMIT (19)

1 .
b = ] eI (19b)

¢

{R2IC) (RHIT-[A]) TICH ]+ [CH] [C ] =0

(19¢)

for TE modes, and
a® = (k2[I]-[A]) '[Ceev (20a)
[Ce1'(k2[1]-[A]) '[E=v=0  (20b)

for TM modes. I and V are column vectors with elements
I, and V,, respectively, [I] is the identity matrix, and
[C"]", [C"], and [C*¢]" are the transposes of [C*], [CFe],
and [C*?], respectively. The elements of the latter matrices
are given by

. 1
Car=— ‘/,P_gscon,(n-vthzn)dl (21a)
nhY* nh
1

érfie = k \/}—)_ ¢C0nl(("i X l;) 'Vtezn) dl (21b)

N 1
ee .
Cs " gﬁcog,ez,, di.

It is worth noting that the characteristic equations (19¢c)
and (20b) are valid for the already defined dual fields.
Similar to the argument used in the matrix formulation, it
is easily shown that the difference between the two dual
fields is a sign change for the matrices [C**], [C**], and
[C¢¢], which enter the characteristic equations (19¢) and
(20b) along with their transpose matrices. The sign changes
are consequently eliminated and the characteristic equa-
tions are valid for both dual fields.

The size of the characteristic matrix in (19¢) and (20b) is
equal to the number of basis functions used, which can be
greatly reduced if the basis functions are properly chosen.
On the other hand, each matrix element is a doubly
infinite sum (over the subscript »), which must be trun-
cated if it is not expressible in closed form. The truncation
limit can, however, be put sufficiently high in order to
correctly account for the singular behavior of certain field
components at the edges. In this procedure the truncation
limit does not influence the size of the characteristic ma-
trix.

(21¢)
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Fig. 6. Rectangular waveguide bifurcation.

The moment method formulation is basically the same
as that presented in {7], except for the form of Green’s
functions used. In [7], the singular parts of the Green’s
functions have explicitly been written as logarithmic func-
tions. The singularity is then removed by integration when
the actual field is calculated. In this formulation, the fields
themselves and not Green’s functions are used. No singu-
larity is then included, and all series converge uniformly.

VL

The validity of the moment method formulation is
demonstrated by investigating some special cases, for which
the distribution of the unknown fields on C, (i.e., &, for
TE modes and (7i-e) for TM modes) is known. Only one
basis function, which is proportional to the known distri-
bution, can consequently lead to the exact solution.

APPLICATION TO WAVEGUIDE BIFURCATIONS

A. y-Independent TE Modes in a Rectangular Waveguide
Bifurcation

Consider the rectangular waveguide with metal sheet at
x = x, which is shown in Fig. 6. Because the structure is
uniform in the y direction, modes with different y depen-
dences are decoupled. For simplicity y-independent TE
modes are considered. As {e,,} must be y-dependent,
b® =0, and only {4,,} is necessary for the field expan-
sion. Another explanation for the absence of {e,,} is the
absence of a y-independent axial surface current on the
metal sheet at x = x,, which means that the transverse
magnetic field & is curl-free everywhere. The set {4,,} is
characterized by

nax
h,,=cos — (22a)
a

nw
Kyp=— (22v)

ab
P, = > (22¢)
n=1,2,3-. (22d)

For y-independent modes, the following choice of the
basts functions in (18a) leads to the exact solution:

.={1 if i=1
’n’ 0

if i #1 (232)
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and hence
h)e-r,=1, (constant). (23b)
The elements of [C**] in (21a) are then given by
26 )
Chh = - sin ne, ifi=1 (24)

0 ifi#l
where @, = 7x, /a. The field expansion coefficients a({* in
(19a) are hence expressed as

2b (a\? sinng, P ’s
a (w) n(n*-%k2) " (25)

where k= k. a /7. Substituting (22) and (25) into (4), one
arrives at

a =1y

(26a)

-
T

i

0 n(sinn(<p0+<p)+8inn(%"99))
L (" R2)

where ¢ =ax/a. On the other hand, the characteristic
equation (19¢) reads

(26b)

The two infinite series in (26) have closed-form expressions
(see e.g. [8]), which are given by

L sink (7 — ) cosk g if p<q,
* sinkgr | —sink g cosk, (7 — @) if @ > g,
(27a)

ik g, sink (7 — ,) =0. (27b)

k.sink

1929
lead to the exact solution, are given by
_[1 ifi=1 .
5'_{0 if i1, (282)
The normal electric field at » = & is then given by
(A-e)|,_p,=¢,,-,=V; (constant). (28b)
Equation (21c) then reads
2‘/—7;aJ0(pna) if i 1
Gi=4 alp) o (29)
0 if i #1,

The field expansion coefficients a{?in (20a) are then given
by

2Vm aa¥y( pa) -
T(p.)(k2-p2)

where l?c=kca. Substituting (16) and (30) into (8), one
arrives at

(e) =
n

(30)

B ©  Jol pa) o p.F
—-J—ez=2aaVlz O(P )0(17 )

kf n=1 J1‘(Pn)(];3_173)

where 7=r/a. The characteristic equation (20b) is re-
duced to

(31a)

- Joz(Pn"‘)
nx

n=1 le(pn)(lztz‘ - PZ)

Again the two infinite series in (31) have closed-form
expressions [8] which read

=0. (31b)

—B _ ma To(k ) [ Jo( k) Yo( k) - Jo (K ) Yo (R,)] if F<a (322)
k25 20 (k) | dp(ka) [ S (k) V(R F) - H(EF)Y(R)] i Fsa :
- (Vk) Ty ) 1o () Yo( R) — dy (Ro) To(.)] =0 (32b)

There are two possible solutions for (27b). Either
sin k g, = 0 and hence h, and all field components vanish
identically for ¢, < ¢ < 7, or sin k (7 — @,) = 0 and hence
k, and all field components vanish identically for 0 < ¢ <
®o- These solutions characterize the already defined dual
fields. They represent the y-independent TE modes in the
two complementary regions 0 < ¢ <¢, and g, <<,
respectively.

B. ¢-Independent TM Modes in a Circular Waveguide
Bifurcation

A circular waveguide bifurcation represents a coaxial
transmission line with a hollow inter conductor. The cross
section of the structure is shown in Fig. 2. The g-indepen-
dent TM modes are expressed in terms of {e,, }, which has
been described in (16). The basis functions in (18b), which

where Y,(x) means the Bessel function of the second kind
and zeroth order. There are again two possible solutions.
Either Jy(k ) =0 or Jy(k,)Yy(k a) = Jy(k &)Yy(k,). The
first solution represents a field which exists within the
inner conductor (0 < r < b) and vanishes on the coaxial
region (b < r < a). The second solution represents the dual
field.

VII. APPLICATION TO STRIPLINE AND RIDGE

WAVEGUIDE

The moment method formulation is now applied to two
other cases, for which closed-form expressions cannot be
obtained.

A. TE Modes on a Stripline

Consider the stripline with the cross section shown in
Fig. 7. The sets {h,,} and {e,,} are two-dimensional so
the subscript » must be replaced by nm. The two sets are
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Y
b
=]
Yoq-------- i
: :
; ]
! ]
! :
l !
¥ ] X
0 X, X, a
Fig 7. Cross section of a stripline.
described by
nwx mm
= €OS —— €OS Y (33a)
a b
n=0,1,2,---, m=0,1,2,---,
(n,m) = (0,0) (33b)
nTxX M
€,m = Sin — sin Y (33¢)
: a b
n=1,2,3,-+-, m=1,2,3,--- (33d)
, X 5 nw\2 [ mm\?
A e I e B G
a b

ab
anh = ane: an= T(l-}_ 8n0)(1+ 6mO) (33f)

The discontinuity in the axial magnetic field is expanded
according to

hi = h7 ey = X In,(x). (34)

In order to reduce the order of the characteristic matrix
in (19¢), the basis functions 1,(x) should satisfy the 0°-edge
conditions at x = x; and x = x,; i.e., they should behave
like |x —x |22 as x - x,, i =1,2,[9]. Equations (21a) and
(21b) are then reduced to

. ma a(1+8,,) sinmy,

Cchh = 7] 35a
nmt 2 b knm an nln ( )
- nw sinm

Ge, = T T 5 (35b)

2 knm an
respectively, where
. 2 X3 ( ‘ nwx J (36)
=— 08 ——
ntn a(1+ ano) -/;l nl x)c a X

and =7y, /b. The characteristic equation (19¢) can be
written as

[Z]I=0 (37a)
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y
I
yO l
J
0 X, a X
Fig. 8. Cross section of a ridge waveguide.
where

s o] o0
2 “hmuiTRmj "he "’he
k + Z Z Cnthnmj'
I1m=1

nm n=

(37b)

If (33) and (35) are substituted into (37b), it is readily
shown that the sum over m can be expressed in closed
form [8]. Equation (37b) is then reduced to

sina, Yo sind,, (7 — o)
nznnjn

(37¢)

—7a [~
le=—§b_ ZO(1+8n0)an

e sin&,m

where

& =§ kg—(f’-"i)z. (38)

" a

The elements of [Z], given by (37c), are easily shown to
correspond to those that can be obtained by applying the
standard spectral-domain technique (e.g. [10]). The mo-
ment method formulation for this case is then reduced to
the well-known spectral-domain technique.

B. TM Modes in a Ridge Waveguide

Consider the ridge waveguide shown in Fig. 8. For
simplicity, only the case with electric wall symmetry at
x =0 will be analyzed. The set {e,,} again is two-dimen-
sional and identical to that described in (33). The normal
electric field at the ridge is expanded as

- ey|y=y0= Z V;(l)gz(l)(x)a
i

+ediny= ZVE().

O<sx<xg

(ﬁ'e)|c0= Jo<y<h
xRV XD,

(39)

To reduce the size of the characteristic matrix in (20b), the
basis functions §(x) and £¢®(y) should satisfy the 90°-
edge conditions at (xg, y,); i.e., they should behave like
Ix = xo|72? and |y — y,|"? as x> x, and y - y,, re-
spectively [9].
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In order to systematize the analysis, ¥ and [C] in
(20b) are written as

V= [ Zg] (39a)
[Ce)=[[C™I[C™] (39b)

where V) and V@ are column vectors with elements V)
and V,®, respectively. The elements of [C®D] and [C®] are
given acco,rdmg to (21c) with £, replaced by £ and ¢@,
respectively, i.e.,

a
C,,(,l,:,—\/ 5 sin my £ (40a)

b
CD, =1/ = sinng,£? (40b)

a

where
2 ,x nmwx
D= f "t x) sin — dx (41a)
a

fo- = /gwﬂml (41b)
@y =7xy/a and Yy=my,/b. The characteristic equation

(20b) is then reduced to

[[wm]

yol
[Ye] ] =0 (42)

yo

el
[re)

0 © C(l) C(l)

with

w-F 5 ()
n=1m= 1 nm
« c;:,%,c,sf,z

vp= 5 gt (430)
n=1m= 1 nm

Y =y (43c)
0 00 C(z) C(2)
2) _ nmi~nmj

YP=% X (43d)

n=1m= 1 krzzm

It can easily be shown that one of the two sums in
equations (43) can be expressed in closed form [8]. The
other sum must be computed numerically. After some
straightforward mathematical manipulation, (43) is re-
duced to

—ab > sina (7 — sina, Y, .. .
Y.ah = Z n( ‘PO) nllbog(l)%-(l) (443)
Y PX S a,sina, e
12) _ y(@
YIS )—Yf. )
—b? ® sinng,sina, P,

Z 5(1)5(2)
neq  Q,Sina,m

27
—a?

2a

sin my, sin,, (7 — @)

¥, siny,m

00
X
m=1

a)(n (44b)

1931
Yl(22)= —ab = SlnYm("T—‘KPO)SIIlYm(pO (2) (2) (440)
4 27 24 Y, SINY,, T
with
nw\? b
o, = @—p—) &="a  (45)
a 7
=\/k? (mﬂ)z 7, = 45b
Ym = ¢ b Ym_ﬂYm ( )
(1)- Efx £D(x)siny,,x dx (45¢)
a 1 m
2
=1 [E()sina,(b-y)d.  (45d)

Yo

Referring to, e.g., [10], it is easily seen that [Y D] is the
characteristic matrix of a corresponding structure with a
single, infinitesimally thin strip at y = y,, which extends
from x=0 to x=x,, while [Y®] is the characteristic
matrix of a corresponding structure with a single strip at
x = x4, which extends from y =y, to y =b. The elements
of [Y9?] are obtained from the elements of [Y V] by
replacing (asina, (7 — ¥()£D) by (bsin mpoij(,z,)).

The formulation presented here consequently is a gener-
alization of the spectral-domain technique in that the finite
metallization thickness is correctly taken into account. Any
existing routine for the analysis of planar structures which
is based on the spectral-domain technique can hence be
modified according to the above statements in order to

extend its validity to comprehend finite metallization
thickness. -
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