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Analysis of Waveguides with Metal Inserts

ABBAS S. OMAR, SENIOR MEMBER, IEEE, AND KLAUS F. SCHUNEMANN, SENIOR MEMBER, IEEE

Abstract —A systematic analysis of wavegnides with metaf inserts is

presented. The method is based on a field expansion in terms of the

normal modes of the corresprndhg hollow waveguide without metaf in-

serts. The analysis leads to two main formulations the matrix formulation

and the moment method formulation. The matrix formulation is suitable

for structures with smooth metal inserts, which are free from sharp edges,

while the moment method is more suitable for metaf sheets (e.g. strips and

fins) or metal inserts with sharp edges (e.g. ridges).

The validity of the method is tested by investigating some special cases,

in which the surface of the metal insert coincides with one of the

coordinate surfaces, e.g. a bifurcation in circular or rectangular wave-

gnides. The method is then appfied to the arsafysis of striplines and ridge

waveguides. It leads to a generafiiation of the widely used spectraf-domain

technique in that ridges, fins, and strips with fiuite thicfmess can now be

analyzed likewise. Any existing routine for the amdysis of planar stroctores

which is based on the spectraf-domabs tecludque can then be slightly

modified in order to take the metaflization thickness into account.

I. INTRODUCTION

M OST OF THE existing methods for the analysis of

guiding structures depend to a great extent on the

specific geometry of the individual structure. A systematic

method for the analysis of waveguides with arbitrarily

shaped cross section is strongly recommended for com-

puter-aided design and optimization of complex mi-

crowave systems, in which different guiding structures are

involved. Although the finite element (or difference)

method (e.g. [1] and [2]) and the mode-matching technique

(e.g. [3] and [4]) are capable of analyzing a wide variety of

structures, their storage and/or CPU time requirements

represent severe restrictions on any economical CAD algo-

rithm.

Many guiding structures simply have a rectangular or a

circular outer boundary and one (or more) contacting or

noncontacting metal inserts which may be either solid or
sheetlike. Examples are striplines and microstrips, finned

waveguides and finlines, ridge waveguides, and multicon-

ductor transmission lines. The electromagnetic field inside

these structures can be expanded in terms of the eigen-

modes of the corresponding hollow rectangular or circular

waveguide in such a way that the different expansions

vanish everywhere inside the metal inserts. This procedure

corresponds to the one-dimensional Fourier series, in which

a function which vanishes over a certain interval can be

expanded with respect to the harmonics corresponding to a

larger interval which includes the smaller one.
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Fig. 1. Cross section of a waveguide with a metaf insert.

In this paper, only homogeneously filled waveguides will

be considered. If the method presented here is, however,

combined with that presented in [5], inhomogeneously

filled structures can be analyzed likewise.

II. BASIC FORMULATION

Fig. 1 shows the cross section of a waveguide with a

single contacting or noncontacting metal insert. Extending

the analysis to multiconductor transmission lines is

straightforward. The direction of propagation, in which the

structure is uniform, is taken along the z axis with the

corresponding propagation constant ~. Let { hzm} and

{ ez~} be the complete sets of axial magnetic and electric

fields which characterize the TE and TM modes, respec-

tively, of the hollow waveguide (i.e., with the metal insert

SO removed). Then h,. and ez~ are real functions of the

transverse coordinates, which correspond to the cutoff

wavenumbers kn~ and kne, respectively, and satisfy the

orthogonality relations [6]

(la)

(lb)

where 8. ~ is the Kronecker delta.

Let v, and ~ be the transverse component of the del

operator and the unit vector in the axial direction, respec-

tively. The set { VteZ~ } is, in fact, complete with respect to

the curl-free transverse electric fields, while the set {~ x

Vt h,. } is complete with respect to the divergence-free
transverse electric fields. The two sets { Vthzn } and { Vtez.
x k } have the same properties with respect to transverse

magnetic fields.

Let e, h, eZ, and h= be the transverse electric, transverse

magnetic, axial electric, and axial magnetic field, respec-
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tively, in the original structure (i.e., with the metal insert

5’0 present) with z dependence e-jflz being dropped out.

Then

V, X e = – jcopohz~ (2a)

v, X h = jucoe=~ (2b)

V#z+ j~h = j@60(k X e) (2C)

V,ez+ j(le = – jtipo(~ Xh). (2d)

These field components can be expressed as expansions in

terms of the above-mentioned complete sets. Because the

expansions are defined everywhere over S, it must be

claimed that they vanish identically over SO. Then e=, the

tangential component of e, and the normal component of

h, which must vanish on CO, are continuous across CO. On

the other hand, h,, the tangential component of h, and the

normal component of e, which generally do not vanish on

CO, have step discontinuities at CO.

Because the structure is homogeneously filled (empty), it

can support either TE or TM modes (the TEM mode will

be shown to be a TM mode with vanishing cutoff

wavenumber).

A. TE Modes

Because the tangential component of h has a step dis-

continuity at CO, (Vt x h), which includes the normal

derivative of the tangential component, behaves as a Dirac

delta function there. This dirac delta function is just the

axial component of the surface current at CO. The vector

(v, X h) can then wmkh everywhere over S except at CO,
and hence h cannot be expanded in terms of the curl-free

set { Vrh ,n } only. It needs, in addition, the divergence-free

set { VfeZ. X ~}. The transverse components h and e can

then be expanded as

(3b)

Because the normal component of h is continuous across

CO, h= can be obtained from ( j/3hz = v,” h) by a term-by-

term differentiation of (3a):

(4)

The expansion coefficients a~h) and b~h) are obtained by

making use of the orthogonality relations (1):

(5a)

The integration is taken over (S – SO) in order to guaran-

tee the vanishing of h and e given by (3) everywhere on

SO. After some mathematical manipulations, one obtaim

where kC is the cutoff wavenumber (k:= k; – ~2).

B. Tit? Modes

Because the tangential component of e is continuous

across CO, (vt x e) is free from Dirac delta functions at CO

and hence can vanish everywhere on S. Consequently, e

can be expanded in terms of the curl-free set { Vfez. }. The

transverse components e and h can then be written as

e=?E“’e’” (7a)

(’7b)

Because e= is continuous across CO, it can be obtained

from (– j~V,eZ = k~e) by a term-by term integration of

(7a):

(8)

Following a procedure similar to that for the TE modes,

the expansion coefficients a f) are obtained:

() ezn(fi. e) dl.
ay) “ (k: - ::,)~ , co

(9)

If kc= O, ez = O and the TEM mode is obtained. The

quantity (jflez/k~) is, however, finite and plays the same

role as an electrostatic potential (p.

III. MATRIX FORMULATION

If the contour CO is closed and smooth enough, i.e., free

from sharp edges, the different field components are regu-

lar at CO so that their series representations converge

rapidly. In this case, hz in (6) and (fi. e) in (9) can be

replaced by twice their series representations (4) and (7a),

respectively. The factor two is due to the step discontinu-

ities of h: and (i -e) at CO. The series in (4) and (7a)

converge then to only half the value of h= and (i. e ),

respectively, at CO.

Substituting (4) into (6a), one arrives at the following
matrix eigenvalue equation for TE modes:

([fib]-[d]) [ffh]fz(h’=k2[A’]a(’)c (10)

where [Ah ] is a diagonal matrix with elements k~h, and
a(h) is a column vector with elements a$h). The elements of
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Fig. 2. Cross section of a coaxiat transmission line

the square matrix [C~] are given by

Substituting (4) into (6b), the column vector b(k)

elements b~~) is given by

b(h)=$[N]-l[T][Ah]a( fi)
c

(11)

with

(12)

where [ Ae] is a diagonal matrix with elements k~e, and [T]

is, principally, a nonsquare matrix with elements given by

Substituting (7a) into (9), the following matrix eigenvalue

equation is obtained for TM modes:

([ A’]+ [Ce])a(e)= k&) (14)

where a(e) is a column vector with elements af). The

elements of the square matrix [Ce] are now given by

C:WI= /& ~%e..(fi”V,e,.) dl. (15)

It is worth noting that if we look for the dual field,

which efists on SO and vanishes identically over (S – SO),

the above analysis remains valid if the normal unit vector

ii is replaced by – ii in all contour integrations. For the

matrix formulation, this has the effect of changing only the

signs of the matrices [ Ch ], [T], and [Ce]. Both dual cases

can consequently be analyzed using the same equations if
these sign changes are taken into account.

The matrix eigenvalue equations (10) and (14) have

essentially doubly infinite order. For computational pur-

poses, the series in (3), (4), (7), and (8) must be truncated,

retaining a finite number of terms. The matrices in (10),

(12), and (14) then become of finite order.

IV. AZIMUTHALLY INDEPENDENT TM MODES

IN A COAXIAL LINE

In order to demonstrate the validity of the matrix for-

mulation, a simple structure is analyzed: a coaxial line.

TABLE I

FIRST TEN EIGENVALUES CORRESPONDING TO DIFFERENT MATRIX SIZES

FOR THE COAXIAL CASE WITH a = 0.5

value :
--------- + _________ + _________ __________ + _________ +____ ______

(50A50) : 0.2209 ! & 2373 ; 12, 53s3 ; 18 E278 : 25 1142
----------+ ---------+ ---------+ ---------+ ----____ -+----------
(1 OOXIOO) ; o 15.57 i 6 2416 : 12. 5425 ! 1s 8321 : 25 j 185

---------- +---------+ ---------+ ---------+ -----__ -_+__________
(200X200) : 0 1109 : .5 243s : 12 5447 : is 8343 : 25 1207

---------- +---------+ ---------+ ---------+ --______ .+___________
Exact ; 0.0000 t 5 24.51 : 12 54.5q i 1S 8364 : 25 122s

-+---------+ ---------+ --------. -+------- __+__________

*---------* ---------+ ---------+ ---------+ ---------+ ---------. +

Value !
-+---------+ ---------+ ---------+ -------__ +----------

(50x50) ; 31 3993 ; 37 6837 : 43 ?677 : 50 2514 : 5A. 5350
---------- +---------+ --------- +---- _____ +__- _-----+ __-______+
(1 OOXIOO) : 31.4037 : 37. .5!3!32 : 43 9723 ! 50.2562 ! 56 5399

----------+ ---------+ ---------+ ---------+ ---------+ _________
<200x200) ; 31 4058 : 37 6903 ; 43.9745 i 50.2584 ; 5t. 5421

.--- —--— —_+---------+ --------- +--------- +---- _____ +----------
Exact : 31 4080 : 37. 6’i’25 : 43 q766 : 50 2605 : 56 5443

k

‘! 1.6

2

.5

G .5 1.0
[r/al ~

o.
/, , I

o .5 1.,
[r/al -

Fig. 3. Electrostatic potential and radiaf electric field for the coaxial

case with a = 0.5––––– matrix formulation; — exact.

The TEM dominant mode is one of the TM modes, which

corresponds to kC = O. Due to the rotational symmetry, the

modes with different azimuthal dependence are decou-

pled. For illustration, only azimuthally independent TM

modes are considered. Fig. 2 shows the cross section of a

coaxial transmission line with outer and inner conductor

radii a and b, respectively. The p-independent set { eZn} is
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TABLE II
FIRST TEN EIGENVALUESCORRESPONDINGTO DIFFERENTMATRIX SIZES

FORTHE CIRCULARWAVEGUIDE CASE WITH a = 0.5

E1gen- :

value :
+---------+ ---------+ .--------+ --.----.. +---------

(50X50) ! 4.13007 : 11 03i3 : 17 2986 1 23. 5742 ! 29 9529
+---------+ ---------+ ---------+ ---------+ ---------

( 100 X1OO) : 4, 8052 : 11.0358 : 17 3031 : 23 5787 ! 29 8575
__________ + --------- + _________ * _ --_,----- +-------_- + _________ .

(200X200) : 4 ao74 ; 11. 03s0 : 17 3053 ! 23. 5s09 : 29, S597
.--=------ + --------- + _________ * _________ + _________ + _________

Exact : 4.8097 : 11 0402 : 17, 3075 : 23, 5831 ; ,29 8618
._________ +---------+ ---------+---------+ -------__ +---------- .
. --------- +---------+ ---------+ ---------+ --------- +---------

Eigen- :
6 7 8 9 : 10

value :
----------+ ---------+ ---------+ --------- +--------- +----------

(50x SO) : 36. 1331 : 42 4141 : 48. &956 i 54 9775 : 61 2595
._________ + ---------- + ---------- +-_-_----- + ------------ + _________

(1 OOXIOO) : 36 137S : 42 41!39 : 48 7006 : 54 9825 ! 61 2648
----------+ ---------+ ---------+ ---------+ ---------+ -----------
(200x200) ; 36 i400 ; 42.4211 : 48 7028 1 54 9S48 : 61 2670

._________ +---------+ ---------+ ---------+ ---------+ -----------

Exact ; 36 1421 ; W 4233 : 48 7049 : 54 9870 ! &1 2&92
4

o. I
, I I , ,

0 .5 1.0

[r/al ---+

1.0

.5

0.
4.

,Jre------
,

0 ,5 1.0

[r/al 4

Fig. 4. Axial and radial electric fields for the circular waveguide case
with a = 0.5. ––––– matrix formulation; — exact.

characterized by

e = Jo(kner)zn (16a)

kn, = h
a

(16b)

Pn, = ra2J~( p.) (16c)

n=l,2,3,... (16d)

Fig. 5. Thin meld insert.

where JO(X) and Jl(x ) are Bessel functions of the first

kind and zeroth and first order, respectively, and pn k the

n th zero of JO(X). Substituting (16) into (15), one arrives at

–4apm~o(P,,a)J1 (Pmcx)
q:m =

a2Jl(Pn)Jl(Pm)
1(17)

where a = b/a. Referring to (14), the different eigenva lues

of ([A’]+ [ C’]) are numerically calculated. The positive

sign refers to fields which exist in the coaxial region and

vanish over the inner conductor, while the negative sign

refers to the dual fields.

These two cases will be referred to as the coaxial case

and the circular waveguide case, respectively. Table I shlows

the first ten eigenvalues correspclnding to different matrix

sizes for the coaxial case with a = 0.5. Exact values are also

included for comparison. The field corresponding to the

smallest eigenvalue is plotted in Fig. 3 along with the exact

field. It represents the electrostatic potential rp and the

radial electric field e, in the coaxial region. The same is

demonstrated by Table II and Fig. 4 for the dual case,

namely the circular waveguide calse.

V. MOMENT METHOD FORMULATION

If the contour CO has sharp edges, some field compo-

nents become singular at these edges. A large number of

terms must then be retained in the series representing these

components, which results in oversized matrices in (10)

and (14). Another case, for which the matrix formulation is

not valid at all, is when the cortour CO is open; i.e., the

metal insert is idealized to an infinitesimally thin one.

Referring to Fig. 5, as 8 ~ O, ~j ~ C~, i- a – ii+. The

other fields involved in (11), (13), and (15) are continuous

everywhere on S and hence the matrices [Ck], [T], and

[Ce] will vanish as 8 ~ O.

When (6) and (9) are, howwer, investigated in the

limiting case 0 = O, it is easily shown that the contour

integral along COcan be replaced by a simple line integral

along C; if ii is replaced by ii’, and h ~ and (i?. e ) are

replaced by (h; – hj ) and (ii’. ~?+ – A‘. e– ), respectively.

This procedure corresponds to the fact that the surface

currents (charges) at C; and C~” will add together, form-

ing a single current (charge) sheet if 8 = O, In the follow-

ing, no special symbols will be used for this case. The usual

symbols must be interpreted according to the above dis-

cussion.

For the above-mentioned cases, it is more suitable to

ex~and h, and (ii. e) at CO in terms of basis functions,
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which individually satisfy the edge conditions

‘,71 CO= Z1i~z (18a)

(@]co=&,. (18b)

Here li and ~ are expansion coefficients, and qi and &i

are the basis functions. The expansion coefficients are

determined by asking for a vanishing tangential electric

field (or normal magnetic field) at CO. If we test the

vanishing fields at CO by the same basis functions

(Galerkin’s procedure), we arrive at the following equa-

tions:

f)(h) = :[Ae]-1/2[@’]z
c

(19b)

for TE modes, and

Je)=(wl-[M)-l[~eel~
[C?e’]’(kj[l]-[ Ae])-&e]V=O

for TM modes. 1 and V are column vectors with

(19C)

(20a)

(20b)

elements

Ii. and ~, respectively, [1] is the identity matrix, and

[C~’]r, [C’e]f, and [@e’]’ are the transposes of [@h], [&he],

and [ ~ee], respectively. The elements of the latter matrices

are given by

(21a)

(21C)
V’ne-%

It is worth noting that the characteristic equations (19c)

and (20b) are valid for the already defined dual fields.

Similar to the argument used in the matrix formulation, it

is easily shown that the difference between the two dual

fields is a sign change for the matrices [~hh], [~he], and

[~ee], which enter the characteristic equations (19c) and

(20b) along with their transpose matrices. The sign changes
are consequently eliminated and the characteristic equa-

tions are valid for both dual fields.

The size of the characteristic matrix in (19c) and (20b) is

equal to the number of basis functions used, which can be

greatly reduced if the basis functions are properly chosen.

On the other hand, each matrix element is a doubly

infinite sum (over the subscript n), which must be trun-

cated if it is not expressible in closed form. The truncation

limit can, however, be put sufficiently high in order to

correctly account for the singular behavior of certain field

components at the edges. In this procedure the truncation

limit does not influence the size of the characteristic ma-

trix.

Y

b.

—

I x~

so

Fig. 6. Rectangular waveguide bifurcation.

The moment method formulation is basically the same

as that presented in [7], except for the form of Green’s

functions used. In [7], the singular parts of the Green’s

functions have explicitly been written as logarithmic func-

tions. The singularity is then removed by integration when

the actual field is calculated. In this formulation, the fields

themselves and not Green’s functions are used. No singu-

larity is then included, and all series converge uniformly.

VI. APPLICATION TO WAVEGUIDE BIFURCATIONS

The validity of the moment method formulation is

demonstrated by investigating some special cases, for which

the distribution of the unknown fields on Co (i.e., h, for

TE modes and (fi. e) for TM modes) is known. Only one

basis function, which is proportional to the known distri-

bution, can consequently lead to the exact solution.

A. y-Independent TE Modes in a Rectangular Waveguide

Bifurcation

Consider the rectangular waveguide with metal sheet at

x = XO which is shown in Fig. 6. Because the structure is

uniform in the y direction, modes with different y depen-

dence are decoupled. For simplicity y-independent TE

modes are considered. As { ez~} must be y-dependent,

b(fi) = O, and only {h=. } is necessary for the field expan-

sion. Another explanation for the absence of { ez. } is the

absence of a y-independent axial surface current on the

metal sheet at x = x ~, which means that the transverse
magnetic field h is curl-free everywhere. The set {h,. } is

characterized by

n 7rx
hzn=cos —

a

Pnh = :

(22a)

(22b)

(22C)

n=l,2,3 . . . (22d)

For y-independent modes, the following choice of the

basis functions in (18a) leads to the exact solution:

{
‘qi= :

ifi=l

ifi#l
(23a)
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and hence

‘ZIX=XO = !1 (constant). (23b)

The elements of [~hfi] in (21a) are then given by
,—

// ‘--2b
qh = — sin n rpO ifi=l

a (24)

\o ifi+l

where rpO= WXO/a. The field expansion coefficients a ~~) in

(19a) are hence expressed as

n )
2b a 3 sinnrpO

a(h)= — _
n (25)

a7r n(n2– Z~)ll

where ~,= kCa /n. Substituting (22) and (25) into (4), one

arrives at

lead to the exact solution, are given by

.5,=(: ifi=l

ifi #l.

The normal electric field at r = b is then given by

(28a)

(fi”e)l,=, = erl,=, =Vl (constant). (28b)

Equation (21c) then reads

/

Z~aJo(PnLY)

@:.
J1(P.)

ifi=l
(29)

ifi+l.

The field expansion coefficients af)in (20a) are then given

by

2fiaa2JO[[ pna)I m n(sinn(rpO +~)+5inn(%– q)) ~26a)
hz=L ~

(rl%q)
— VI (30)a$)=J1(P.)(&p:)T ?1=1

where q = TX/a. On the other hand, the characteristic where ~C = kca. Substituting (16) and (30) into (8), one
equation (19c) reads arrives at

q (3:;)=0. (26b) j~ w Jo(P.a)Jo(Pnf)
-—e =2aaV1 ~ —k: z

JII(P. )(&-P;)
(31a)

The two infinite series in (26) have closed-form expressions
~=1

(see e.g. [8]), which are given by where ? = r/a. The characteristic c equation (20b) is re-

11

(

duced to

hz=-
sin XC(7 – rfO) cos%Cp if ff<qo

sin kC~ –sin ZC~OcosZC(7r – q) J;( P# )ifrp>~O
J& 2 —=0.

.=1 J1 (PM--P:)
(31b)

(27a)

~ s~~z ~ sin ZCqOsin Zc(7r – rpO) = O. (27b) Again the two infinite series in (31) have closed-form

cc expressions [8] which read

– M vaa

{

v Jo(&)[JO(~C)YO(k@)- Jo(kCa)Yo(kC)] if T<u

k; ‘z= 2Jo(kC) 1 JO(kca)[Jo(~C)YO( /&)- JO(~C7)Yo(~c)] if?>a

&JO(kCa)[Jo(kC) Yo(kca)- Jo(kCa)Yo(~C)] =0
o

(32a)

(3:2b)

where Y.(x) means the Bessel fun ction of the second kind
“..

There are two possible solutions for (27b). Either
and zeroth order. There are again two possible solutions.

Either Jo(~Ca) ==O or Jo(~c)Yo(~,,a) = JO(~Ca)Yo(~C). The
sin ~Ccpo= O and hence h, and all field components vanish

first solution represents a field which exists within the
identically for cpo< rp < r, or sin ~C( r – rpo) = O and hence

h= and all field components vanish identically for 0< q <
inner conductor (O < r < b) and vanishes on the coaxial

region (b < r < a). The second solution represents the dual
CPO. These solutions characterize the already defined dud field
fields. They represent the y-independent TE modes in the “

two complementary regions O < q < q). and To < q < n, VII. APPLICATION TO STRIPLINE AND RIDGE

respectively. WAVEGUIDE

B. p-Independent TM Modes in a Circular Waveguide
The moment method formulation is now applied to two

Bifurcation
other cases, for which closed-form expressions cannot be

obtained.
A circular waveguide bifurcation represents a coaxial

transmission line with a hollow inter conductor. The cross A. TE Modes on a Stripline

section of the structure is shown in Fig. 2. The rp-indepen- Consider the stripline with the cross section shown in

dent TM modes are expressed in terms of { ez~}, which has Fig. 7. The sets { hz~ } and { e,n } are two-dimensional so

been described in (16). The basis functions in (18b), which the subscript n must be replaced by nm. The two sets are
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Y

b-

Yo .. —--- --

, ,fi=~ ,

t 1
i I
1 I
1
I I
I I

I
I
,

I

‘o x1 X2

Fig 7. Cross section of a stripline.

described by

n ITX m 77y
hZ~~ = COS — Cos —

a b

?Z= 0,1,2,. -., m = 0,1,2,. ...

x

(33a)

(n, m) # (0,0) (33b)

n vx m ry
eZflm= sin — sin —

b
(33C)

a

n=l,2,3,. ... m=l,2,3, . . . (33d)

Pnmh = Prime= Pnm=:(l +ilno)(l+amo). (33f)

The discontinuity in the axial magnetic field is expanded

according to

h: –hjlp=,, = z~,~,(x). (34)
1

In order toreducethe order of the characteristic matrix

in (19c), the basis functions q,(x) should satisfy the OO-edge

conditions at x = xl and x = Xz; i.e., they should behave

like lx – x,11’2 as x -+ x,, i =1,2, [9]. Equations (21a) and

(21b) are then reduced to

mn a(l+ 8HO) sinm~O
~hh =

?Iml
2b

‘nm~

L (35a)

respectively, where

(35b)

and ~0 = myO/b. The characteristic equation (19c) can be

written as

[Z]I=O (37a)

o x
Xo a

Fig. 8. Cross section of a ridge waveguide.

where

If (33) and (35) are substituted into (37b), it is readily

shown that the sum over m can be expressed in closed

form [8]. Equation (37b) is then reduced to

(37C)

where

(38)

The elements of [Z], given by (37c), are easily shown to

correspond to those that can be obtained by applying the

standard spectral-domain technique (e.g. [10]). The mo-

ment method formulation for this case is then reduced to

the well-known spectral-domain technique.

B. TM Modes in a Ridge Waveguide

Consider the ridge waveguide shown in Fig. 8. For

simplicity, only the case with electric wall symmetry at

x = O will be analyzed. The set { e=. } again ‘is two-dimen-

sional and identical to that described in (33). The normal

electric field at the ridge is expanded as

[

—eyly=yo= ~ q%p(~)) O<x<xo

(ii. e)lco=
+ I?xlx=xo= i q(2%:2)(Y)9 yo<y <b.

i

(39)

To reduce the size of the characteristic matrix in (20b), the

basis functions ~~l)(x) and $:’)(y) should satisfy the 90 °-

edge conditions at (xo, ye); i.e., they should behave like

lx – Xol ‘li3 and Iy – yol –1/3 as ~+xo and ~+~0~ ‘r-

espectively [9].
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In order to systematize the analysis, V and [~] in

(20b) are written as

-[ 1~_J/(l),

J7(2)

[c”] = [[eq[dq]

(39a)

(39b)

where V(l) and V(2) are column vectors with elements ~@)

and K.(2), respectively. The elements of [@J] and [~(2)] are

given according to (21c) with $, replaced by $~1) and ~~2),

respectively, i.e.,
—

(40b)

where

TO= ~XOla and $0= myo/b. The characteristic equation
(20b) is then reduced to

[ ][ 1
[y(l’)] [Y(’2)] J7(l)

[y(21)] [y(22)] p =0
(42)

with

y(zl) = yj$la
ZJ

(43C)

It can easily be shown that one of the two sums in

equations (43) can be expressed in closed form [8]. The

other sum must be computed numerically. After some

straightforward mathematical manipulation, (43) is re-

duced to

1931

(44C)

(4.5a)

(45b)

(45C) ;

(45d)

Referring to, e.g., [10], it is easily seen that [Y(n)] is the

characteristic matrix of a corresponding structure with a

single, infinitesimally thin strip at y = yo, which extends

from x = O to x = Xo, while [Y ‘22)] is the chai-acteristic

matrix of a corresponding structure with a single strip at

x = Xo, which extends from y = y. to y = b. The elements

of [Y(12)] are obtained from the elements of [Y(n)] by

replacing (a sin ii~(n – ~O)fi~)) b! (b sin ncpo~).

The formulation presented here consequently is a gener-

alization of the spectral-domain technique in that the finite

metallization thickness is correctly taken into account. Any

existing routine for the analysis of planar structures whtich

is based on the spectral-domain technique can hence be

modified according to the above statements in order to

extend its validity to comprehend finite metallization

thickness.
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